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To investigate the link between discrete small-scale and continuous large scale mechanical properties of a
foam, we observe its two-dimensional flow in a channel, around an elliptical obstacle. We measure the drag,
lift, and torque acting on the ellipse versus the angle between its major axis and the flow direction. The drag
increases with the spanwise dimension, in marked contrast with a square obstacle. The lift passes through a
smooth extremum at an angle close to, but smaller than 45°. The torque peaks at a significantly smaller angle
26°. No existing model can reproduce the observed viscous, elastic, plastic behavior. We propose a microscopic
visco-elasto-plastic model which agrees qualitatively with the data.
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A foam is a model to study materials which are viscous,
elastic, and plastic. This complex, ubiquitous behavior is ex-
ploited in numerous applications, such as ore separation,
drilling and extraction of oil, food or cosmetic industry �1�,
but is not yet fully understood �2�. Foam rheology is thus an
active research area, and recent studies provide insight to
understand the interplay between the bubble scale and the
whole foam behavior �3,4� and to unify elasticity, plasticity,
and viscosity �5�. Here, we study the flow of foam around an
ellipse, where the measured lift, drag, and torque show the
whole complexity of foam rheology, which strongly con-
strains possible models: simple ones do not capture the ob-
served features. We propose an elastoplastic model which
describes the data well. We discuss the generality, implica-
tions, and limitations of this model.

We have built a foam channel �6� to investigate a two-
dimensional �2D� steady flow and measure the force it exerts
on an obstacle �Stokes experiment �6–10��. Briefly, a 1 m
long, 10 cm wide tank is filled with deionized water with 1%
of commercial dish-washing liquid �Taci, Henkel�. Its sur-
face tension is �=26.1±0.2 mN m−1, and its kinematic vis-
cosity is �=1.06±0.04 mm s−2. Several computer controlled
injectors blow nitrogen in the solution to form a horizontal
monolayer of bubbles of average thickness h=3.5 mm, con-
fined between the bulk solution and a glass top plate
�quasi-2D foam� �11�. This foam is monodisperse �bubble
area at channel entrance: A0=16.0±0.5 mm2� and its fluid
fraction is estimated to be around 7% �12�.

We study here the simplest shape whose symmetry is low
enough to observe simultaneously drag, lift, and torque: the
ellipse �Fig. 1�. The obstacle has a major axis 2a=48 mm
and minor axis 2b=30 mm. It floats freely just below the top
glass surface, without solid friction. The upper end of an
elastic fiber passes through a hole in the bottom of the ob-
stacle, ensuring its free rotation, while its lower end is fixed,
so that a top view of the obstacle displacement from its po-
sition at rest measures, with a precision better than 0.1 mN,
the force exerted by the foam on the obstacle.

We measure the drag in the parallel orientation ��=0�,
which is stable �see below�; and in the perpendicular one
��=90° �, which is unstable �but where the ellipse can remain
for one hour, enough to perform steady flow measurements�.
The results �Fig. 2� are very close to that for circles of diam-
eters 30 and 48 mm, respectively: this suggests �see also Fig.
4�a�� that drag is proportional to the spanwise direction
�along the y axis� l of the ellipse:

l = 2�a2 sin2 � + b2 cos2 � . �1�

In a steady flow �530 ml min−1, i.e., a velocity of
2.5 cm s−1�, we start from a given initial orientation �76°,
64°, 48°, or 18°�, let the ellipse rotate freely to its parallel
stable orientation, and measure the angle, drag, and lift �Fig.
3�. The angular velocity strongly increases in the range
15° ���40° �with a peak at 26°� and does not depend on
the initial orientation �inset of Fig. 3�. Moreover, the forces
correlate to �; we thus eliminate the time and plot the depen-
dence of drag and lift with � �Fig. 4�a��. All the force data
collapse on two master curves, one for the drag and one for
the lift. The drag increases roughly linearly with � except
very close to 0° and 90°, where it is extremal by symmetry
�it equals 4.5 mN for 0° and 8.8 mN for 90°�. As suggested
before, the experimental angular dependence of the drag is
close to the one of the spanwise dimension, despite small
discrepancies for angles close to 0° and 90°. The lift vanishes
at 0° and 90°, as expected by symmetry; it is negative
�downwards� for angles between 0° and 90°, with a maximal
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FIG. 1. Top view of the elliptical obstacle and of the surround-
ing bubbles. Ellipse �a� perpendicular to the flow, �b� tilted in the
flow, �c� parallel to the flow. The x axis is the direction of the flow
direction and of positive drag, y is the direction of positive lift, and
� �between 0° and 90°, by symmetry� is the angle between x and the
major axis of the ellipse.
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absolute value of 3 mN at an angle of about 40°.
These measurements are independent of the initial orien-

tation, even in the region of quickest variation �inset of Fig.
3�. This suggests that the results, obtained in transient re-
gimes, would be the same if we could fix � to perform steady
flow measurements. In fact, at a lower flow rate
�25 ml min−1�, we observe very similar tendencies, although
more noisy �data not shown�. It is thus natural to neglect the
obstacle’s inertia, and assume that the torque exerted by the
flowing foam is exactly balanced by a friction torque �arising
mainly from viscous dissipation in the capillary bridge be-
tween the ellipse and the top plate�. Furthermore, the angular

velocity ��̇� is lower or comparable to 1° s−1 �Fig. 4�b��,
hence the associated Reynolds number a2��̇� /� does not ex-
ceed 10. We can thus assume that the friction torque is pro-

portional to the angular velocity �̇, then Fig. 4�b� represents
�up to an unknown multiplicative constant characterizing the

dissipation� the torque exerted by the foam. It displays a
peak around 26°, compatible with Fig. 3.

Figure 4�b� shows that the torque is negative for all posi-
tive � values. Thus the only stable orientation of the ellipse is
the parallel one, �=0°. This contrasts with the Newtonian
case, where long objects settle broadside-on �13�. Note that
in the case of a Stokes flow �without inertia or elasticity�,
every orientation of the ellipse would be neutrally stable in
an unbounded fluid �14�, but that in the presence of bound-
aries, the parallel orientation is more stable �15�. On the
other hand, this is coherent with studies in other non-
Newtonian fluids, where ellipses settle broadside-along un-
der gravity in Oldroyd-B fluids �15� or spherical particles
aggregate vertically during sedimentation in shear-thinning
fluids �16�. Actually, the stable orientation of long objects
under flow is determined by a competition between inertia
and viscoelasticity �17�, which have opposite effects.

Figure 4�a� shows that the lift is oriented downwards, as
for a cambered airfoil, probably due to the positivity of the
first normal stress difference �18�: this should therefore be
valid for every viscoelastic fluid �15�. It is worth noting that
lift �Fig. 4�a�� and torque �Fig. 4�b�� are not maximal at the
angle of 45°. This contrasts with the existing prediction of
the torque exerted on an ellipse by a second-order fluid in
potential flow �20�, which predicts an angular dependence of
the form cos � sin �. We suggest two possible explanations
for this discrepancy. First, the flow of foam is not potential,
and even breaks the x→−x symmetry between upstream and
downstream �21�. Second, second-order fluids might not be
good models for foams, because they do not include yield
stress.

In yield stress fluids, viscoplastic models predict that the

FIG. 2. Drag exerted by the flowing foam on an elliptical ob-
stacle, versus the flow rate. �: �=0° �Fig. 1�a��; �: �=90° �Fig.
1�c��. Bold lines are linear fits to the data. Data �open symbols� and
fits �dashed lines� for circular obstacles ��: 30 mm; �: 48 mm
diameter� from Ref. �6� are plotted for comparison.

FIG. 3. Angle ���, drag ���, and lift ��� of the ellipse, versus
time, for an initial angle of 76°. Inset: zoom on the region of quick
variation of the angle. The data for three different initial orienta-
tions ��: 76°, �: 64°, �: 48°� are superimposed, by translating the
time axis. The solid line is a fit to all data with a hyperbolic tangent
profile, indicating that the maximum angular velocity is
−2.1±0.1� s−1 for an angle of 26.4±0.1°.

FIG. 4. �a� Drag �positive values� and lift �negative values�, �b�
angular velocity �̇ versus �. Data correspond to the time-dependent
experiments with four initial orientations: 76° �same data as in Fig.
3�, 64°, 48° and 18°. Also shown for lift and drag are data from the
steady orientations, �=0° and 90°. In �a�, the plain curve is the fit
by the spanwise dimension �1�, and the dashed one is the fit by Eq.
�2� for the lift; both fits are up to a free prefactor. In �b�, data for
15° ���40° are noisy but compatible with the inset of Fig. 3
�open circle�. The curve is the fit by Eq. �2�, in arbitrary units.
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drag on circular obstacles is proportional to the radius of the
obstacle �22� as long as the yield stress remains the prepon-
derant contribution to the total stress. This agrees with ex-
periments on circles �6�, and this is compatible with the pro-
portionality of the drag with the leading length of the ellipse
�Fig. 2�. However, this scaling with the leading length does
not hold for a square obstacle, which experiences a drag
independent of its orientation �6� for reasons we do not un-
derstand yet. In addition, any orientation of a square obstacle
is neutrally stable in a flowing foam �6�, whereas it would
align its diagonals streamwise and spanwise in a viscoelastic
liquid, as reported in Ref. �15�.

To summarize, we are not aware of a single macroscopic,
continuous �viscoelastic or viscoplastic� model which can
explain the whole set of experimental data. We now propose
an elastic, microscopic model, to catch the main qualitative
features of drag, lift, and torque. We estimate the contribu-

tion F� of the soap film tension �which determines the normal
tensile elastic stress �1,19�� to the force on the ellipse. Since
the foam is quasi-2D, each film separating two bubbles in
contact with the obstacle exerts on it a force directed along
the film; its magnitude is the line tension �, which is twice
the air-water surface tension �, multiplied by the foam height
h, and a prefactor accounting for 3D geometry �18�. If the
flow is quasistatic, the film is along the normal n� to the
surface of the ellipse �see Fig. 1�. The total force is thus a

sum performed over the films in contact with the ellipse F�

=��n� . We do not model the contribution of the bubbles’
pressure, which is of the same order of magnitude, and is
roughly proportional, to the contribution of the film tension
�21,23�. We do not model either the velocity-dependent
forces and torque, originating from the viscous friction
within the lubrication films between the ellipse and the sur-
rounding bubbles.

If the ellipse is much larger than the bubbles, we consider
the distance between consecutive films along the ellipse as a
continuous function f���, � being the angle in the ellipse’s
parametric equation: X���=a cos �, Y���=b sin �, and write

the force F� and torque C as integrals:

F�

�
=� n����

f���
d� = ab�

0

2	 	 cos �

a
e�X +

sin �

b
e�Y
 d�

f���
,

C

�
=� r���� Ù

n����
f���

d� · e�z = �a2 − b2��
0

2	 cos � sin �

f���
d� .

�2�

We then deduce the drag and lift as Fx=FX cos �−FY sin �,
and Fy =FX sin �+FY cos �, respectively.

We must now model the function f , or equivalently, the
deformation of bubbles around the obstacle. As already men-
tioned in Ref. �18�, this is strongly correlated to the local
structure of the flow: if it converges towards the obstacle
�leading side�, it squashes the bubbles in contact, and f is
high. Conversely, if the flow diverges from the obstacle
�trailing side�, it stretches the bubbles in contact, and f is
low. Experimental images support this argument �Fig. 1�,

and, more precisely, lead us to set a phenomenological ex-
pression for f . Figure 1 shows that the bubbles remain
squashed over the whole leading side �
���	+
 with 

=arctan�b cot � /a� from elementary geometry�; we thus as-
sume that f takes a maximum value, fM over this interval. At
the trailing side, Fig. 1 shows that the bubbles are progres-
sively stretched up to a maximum close to the y=0 point, or
equivalently close to the angle �=−� . To reproduce this
observation, we assume a piecewise affine variation of f
from fM to a minimal value fm in the ranges −����
, and

−	���−�. The analysis of several images of the bubbles
along the obstacle yields the following estimates: fm
=3.3 mm and fM =4.9 mm. Given the aspect ratio a /b=1.6,
we can calculate the drag, lift, and torque from Eq. �2� �Fig.
4�.

For the drag, it turns out that the result from Eq. �2� is
indiscernible �with 1% precision, up to a free prefactor� with
Eq. �1�; the agreement with the experimental data is thus
quite good �Fig. 4�a��. For the lift, we predict the sign, i.e.,
explains the downwards lift: the tensile stress is larger at the
trailing edge where it contributes in average downwards �and
downstream� for angles between 0° and 90°, than at the lead-
ing edge, where it contributes upwards �and upstream�. This
confirms that the lift is dominated by the elasticity, as is the
case for an airfoil �18�. Moreover, we predict correctly the
angular dependence of the lift, and a maximum at angle 40°,
which agrees quantitatively with the experiments. For the
torque, the agreement is qualitative: we predict its sign, the
existence of a maximum at an angle smaller than 45°, and
the stability �instability� of the parallel �perpendicular� orien-
tations.

The present model relies mainly on the coupling between
bubble deformation and flow. This argument has a very gen-
eral validity: it explains the anti-inertial lift exerted by a
flowing foam on an airfoil �18�, and predicts quantitatively
the drag on a circle on several decades of fluid fractions �12�.
It also applies in 3D, as shown by the analogies between the
2D flow around a circle �6� and the 3D flow around a sphere
�8,10�. It is qualitatively insensitive to the presence of chan-
nel walls, both because this does not influence the conver-
gence or divergence of flow close to the obstacle, and be-
cause of the very limited lateral extent of the influence of an
obstacle for foams �6,8� compared to Newtonian fluids.

Foams are often modeled as viscoplastic fluids, such as
Bingham or Herschel-Bulkley models �24�. Such models de-
scribe yielding, which is occurring at the leading side, where
the roughly constant amplitude of bubble deformation �Fig.
1� is a manifestation of yield strain. On the other hand, vis-
coelastic fluids such as the Oldroyd-B model often used for
polymers �25� describe the delayed, elastic response of the
bubbles, apparent at the trailing side through the progressive
stretching of the bubbles �Fig. 1�.

Our phenomenological model captures both the coupling
between strain and flow �with delayed response� and the
saturation of deformation �yielding�. It yields a good agree-
ment with experimental data �Fig. 4�. Still, we can suggest
improvements in three directions. First, the law assumed for
f is a phenomenological description of observations. The
next step would consist in predicting this function. This
would require one to quantify accurately the evolution of
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strain due to advection and plastic rearrangements of
bubbles, which is predicted by recent models in the simple
case of shear flow �5�; here, a generalization to more com-
plex flows and geometries is required. Second, we could ex-
tend this model to describe the velocity-dependent contribu-
tion to drag, lift, and torque. This requires to quantify
precisely the influence of friction on the interaction between
bubbles and obstacle boundaries �3�. Third, it would be use-

ful to include the effect of sharp angles, in order to under-
stand why the drag on a square does not depend on its ori-
entation.

We have benefited from stimulating discussions with J.
Wang, S. Cox, and C. Raufaste, as well as during the FRIT
workshop.
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